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Abstract-The selttic formalism ofStroh for anisotropic elasticity leads to the eigen-relation N~ = p~

in which 1'1 is a 6 x 6 real matrilt. The orthogonality and closure relations as well as many other
relations involving the eigenvalues p and the eigenvectors ~ are based on the assumption that 1'1 is
simple or semisimple so that the silt eigenvectors ~. span a silt-dimensional space. Problems arise
when 1'1 is non-semisimple. In fact there are problems even when 1'1 is almost non-semisimple. We
present a modilied formalism which is valid regardless ofwhcther 1'1 is simple. almost non-semisimple
or nOIl-scmisimple. The modified formalism does not apply when 1'1 is Sl·misimplc.

I. INTRODUCTION

The sex tic formalism for anisotropic elasticity originally due to Stroh[ I. 2J assumes that Ihe
6 x 6 real matrix N is simple. This means that the eigenvalues 1'. (IX = 1.2..... 6) of N are
distinct so that there are six independent eigenvectors ~•. The formalism applies also to
semisimple N in whieh there is a repeated eigenvalue. say 1'1 = I'~. but there exist two
independent eigenvectors ~ I and ~ 2. When N is non-semisimple. i.e. whenI'I = 1'2 and there
exists only one independent eigenvector associated with 1'1 and I'~. the Stroh formalism
does not apply. Anisotropic ehtstic materials which lead to a non-semisimple N are called
degenerate materials. Isotropic materials are a special group of degenerate materials.
Nishioka and Lothe[3.4J studied the limiting behavior of the Stroh formalism when the
material ~comes isotropic. Lothe and Barnett[5J and Chadwick and Smith[6] introduce the
generalized eigenvectors and obtain an important result that some relations for simplt: N
continue to hold for non-semisimple N if the eigenvectors are replaced by the generalized
eigenvectors. However. as we will see in this paper. not all relations for simple N can be
converted to relations for non-semisimple N by simply replacing the eigenvectors by the
generalized eigenvectors. Examples will be given in this paper. The main purpose of this
paper however is to look at the situation in which N is almost non-semisimple.

When N is simple or semisimple. the Stroh formalism applies. When N is non-semi­
simple. the generalized eigenvectors take the place of eigenvectors. The transition of the
formalism from a simple or semisimple to non-semisimplc N is not continuous. This suggests
that some dilliculties may arise when N is almost non-semisimple. Indeed. as we will see in
Section 2 where we summarize the Stroh formalism. when N is almost non-semisimple the
magnitude of the orthonormalized eigenvectors associated with the almost equal eigenvalues
is very large and beeomes infinite as the two eigenvalues become equal. To overcome Ihis
dilliculty we present in Section 3 a modified sextic formalism which applies 10 almost
non-semisirnple N. The formalism remains valid when N is non-semisimple. In I:tct the
assumption of almost non-semisimple is not required in the derivation and hence the
formalism applies to simple N as well. The modified formalism however docs not apply to
N which is semisimplc.

In Section 4 we show the conversion from the Stroh formalism to the present modified
formalism. With the conversion many relations which are valid for simple or semisimple N
can be rewritten for non-semisimple or almost non-semisimple N. Applications to sum rules
are given in Section 5. Finally we show in Section 6 how one can split the generalized 6­
vectors ~ for almost non-semisimple N into two 3-vectors a and b and determine them
separately.
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, THE STROll SEXTIC FOR\1:\L1S\l

In a fixed rectangular coordinate system (xi.x:-xd let the stress (J" and strain I:" of
the material be related b\

(I)

where C", are the elasticity constants. Unless stated otherwise repeated indices imply
summation. For two-dimensional deformations in which the displacements Uk (k = 1.2. 3l.
depend l)n .\, and x: only. ,I general solution for II. can he written in matrix notation as

1I = all:)

: = x, +px:

ill which ( is all arbitrary fum:tion of :. The eigenvalue (I and the eigenvector a an:
determi ned from [7J

where superscript T stands I"or the transpose and the 3 x 3 matril'es Q. Rand T arc given
hy

(!'j ce. (', I, ,. (7)

ivbtril.:es Q and Tare sYlIlllletril.: and positive dclinite if the strain enagy IS positive.
Introdul.:ing the new vCl.:tor

h -= (I{ I +pT):t
I

(Q+!,R)ll
P

in which the second equality I.:omes I"rolll eqn (5). the stresses an: ohtained from the stress
function If> hy[ 1.2]

(9)

II) = h/(:).

Equations (in, and (X): can he wrillen in the standard eigen-rclation as

(10)

( II)

( 12)

". _ '1' I R r ... ' -. '1' I _ :-"1' }j.,. 1 - - • I ,,~ -- - i"'l ~ •

;\;; = RT 'R' -Q = N';,
(13)

Thus ~ is the right eigenvcl.:tor of the () x 6 real matrix N. The left eigellvedor" satisfies



S<:lttic rormalism in anisotropic elasticity ror almost non-semisimple matnlt :'Ii 67

Introducing the 6 x 6 matrix: J by

( 15)

where ( is the identity matrix. it can be shown that

From eqns (11). (14) and (16) we may set without loss of generality

q = J~ = [:}

( 16)

(17)

Since p cannot be real if the strain energy is positive[7]. we have three pairs of complex
conjugates for p as well ,1S for ~ and q. If p,. ~. and q, (:x = 1..... 6) are the eigenvalues
and the eigenvectors. we let

f' •• I =p"
~"I = ~,.

( 18)

whcre 1m denotes the imaginary parI. and an ovcroar st,tnds for the complex conjugate.
When N is simple or semisimple. ~. span a six-dimensional space and arc orthogonal to q•.
Since~, ootained from eqn (II) arc unique up to a multiplicative constant. we may normalize
~, such that (with '1, determined from e4n (17)

( 19)

when: ()'/l is the Kronecker delta. The orthonormal relations can be written in matrix
notation as

yrU = I

in which the 6 x 6 matrices U and Yare

U = [~I' ~~. ~.l' ~I' ~~. e-d}
Y = [qt. q~. q" 'II. 'b tid·

Ifwe introduce the 3 x 3 matrices

(20)

(:! 1)

(22)

we may write U and Y as. using eqns (12)! and (17)

U= [A AJ8 B . V=JU. (23)

Equation (20) implies that y T and U arc the inverse of each other and hence the order of
the product can be interchanged. We have



T. C. T. TI~G and C. Hwc

or. carrying out the matrix multiplications using eqns (15) and (23)

AAT +.:\AT
= 0 = BB' +BBT

}

BAT +BAT= 1 = AB T +.:\B'.

(24)

(25)

These are the closure relations. Equations (25) tell us that there exist real matrices H. L
and S such that

H=2iAA'.=H' }
L = -2iBB' = LT

S = i(2AB' -I).
(26)

We see that Hand L arc symmetric. and can be shown to be positive definite if the strain
energy is positive[6]. The three real matrices t-I. Land S play important roles in the problems
of anisotropic elasticity and surface waves (sec. e.g. Rds [6. 8-11 D.

The above formalism from eqns (19) to (26) arc valid if N is simple or semisimple
because we have six independent eigenvectors ~I' If N is non-semisimple, say we have
fli = fI: and also ~ I = ~:. we do not have six independent eigenvectors to span the six­
dimensional space. Consequently, eqns (19) (26) arc not valid. Isotropic materials arc the
well-k nown example of having a non-semisimple N for which fli = fI: = i and ~ I = ~:. In
fact fI' = i also hut ~ I is independent of ~ I.

One encounters dilliculties not only when N is non-semisimple hut also when N is
allllost non-semisimple. This means that fli and fI: arc almost equal as arc ~ I and ~:. To
sec the prohlems which may arise when N is almost non-semisimple. let ~ I and ~: he uflit

vectors satisfying eqn (II) for fI = fli and fI:. respectively. Assuming that fli' fI: arc almost
equal as arc ~I' ~:, we let

(27)

in which y is a unit vector and /; is a function of J sUl:h that as (5 approaches zero so docs
I:. To have an orthonormal system we set

~I = k,~" ~: = k:~: = k:(~, +I:Y).}
"I=J~I' ,,:=J~:

(2X)

where k I. k: are complex constants to he determined. Application ofeqn (19) for 'X, {I = 1.2.
leads to

(29)

Ignoring the r.: term when () is small, we have

(30)

Hence k l and k: are of order r.- II
:. Consequcntly, thc ortllOflormali=ccl vcctors ~I and .;:

arc very large vectors when <5 is small and becomc unbounded when J approaches zero. This
creates problems for a numerical calculation of thc eigenvectors when N is almost non­
scmisimple. Equations (30) also tcll us that k: = ± ik I and hence. as <5 -+ O. the ortho­
normalized eigenvectors {I and {! are f10t exactly equal but differ by a factor of ±i. The
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statement that ~ I and ~ ~ are almost equal should therefore be interpreted as almost linearly
dependent.

In the next section we present a modified formalism for the case when N is almost non­
semisimple. We will see in the derivation that the assumption of almost non-semisimple is
unnecessary. The eigenvalues PI and P~ need not be almost equal. The only requirement is
that ifP I and P~ are almost equal, so are ~ I and ~~.

3. MODIFIED SEXTIC FORMALISM

We assume in this section that there is a possibility that P I and P~ are either equal or
almost equal. When that happens. we assume that ~ I and ~ ~ are also equal or almost equal.
By eqns (18) P~ and Ps as well as ~~ and ~s are equal or almost equal. It suffices to discuss
the modifications required for ~ I and ~ ~ only.

From eqn (II) we have

(31 )

in which ~; and ~; are scalar multiples of ~ I and ~ ~ obtained in the last section. The scalar
multiples are not unity or ± i because of a ditlcrent orthonormal system we are introducing
here. Instead of eqns (31) we consider

N~; = PI~'; }

Nfz = P !~'z + ~';
(32)

where

f2 = (~'2 -~';)/J}

fi = ~'i +<>fz
(33)

<> = P~ -PI' (34)

Eljuation (32)2 is obtained when wc subtract Clin (31), from eljn (31)~ and dividc the resulting
clju.ltion by (p2-pd. Likewise. we will consider for the \cft eigenvectors the following
cljuations:

in which

'1'1 = ('1-;-'1'j)/b}

'1'j = '1'2 - (5'1'1 .

(35)

(36)

Thus instead of ~I' ~'2' 'II. 'I;. we will use ~'I' ~;. '1'1. '1~. They are determined from eqns (32)
and (35). The vectors ~2 and 'I, are not employed. but their relations with ~;. f~. '1'1' 'I; as
given by eqns (33) and (36) will be useful in establishing certain identities. Hence <5 can be
arbitrary. zero or non-zero. Instead of solving eqn (35) for '1'1 and '1'2. they can be obtained
from ~l and fz by applying eqns (17) and (36). We have
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(37)

Tht: nt:w vt:l:tors satisfy tht: following relations:

(3~)

(39)

Equations (38) and (39) are obtained when we pre-multiply eqns (32), and (2),. respec­
tivdy. by '(IT and use eqn (35)1' To form an orthonormal system we must have

\, (40)

In view of eqn (38). we see that we do not have to consider all three equations in eqns (40).
Since';!. ,;'" '(1. ,,; obtained from eqns (32) and (35) arc not unique. we \vill sh\)w how one
can obtain a set of vectors so that eqns (40) are satisficd.

Let ~I' f~. 'i',. '1: satisfy cqns (32) and (35). They abo satisfy eqns OX) and (3tJ). It can
he slHlwn with the use of eqns (37) that

(41)

also satisfy eqns (.'2) and (35) in which k ,. k ~ ami k'~ an: arhitrary complex constants which
are related hy

k: = k I -hik'~.

Imposition ofeqns (40lt. (40): and use ofcqn ntJ) lead to

( ..tI)

With eqns (43). eqn (3~) can be written as

If we solve for (k:-k,) from eqn (44) and substitute it into eqn (42) we obtain

(45)

When ,i i- O. the orthogonal relation of ~,. I;' (:t = 1.2) and eqns (33) I and (36) I assure
us that rj/~, and rj l' ~': do not vanish. Hence k I and k: exist. In eqn (45) k 1+ k, vanishes
if k I = - k:. However. k 1 obtained from eqn (43), is not uniq ue in the sense that if k 1 is a
solution so is -k l' The same statement applies to k ~ and one can always choose the signs
so that k I = k c instead of k, = - k c' Hence k': also exists.

When {i = O. eqns (43) and (44) can be written as

(40)

The third equality in (46)comcs from eqn (31\). The existence oforthonormalized generalized
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eigenvectors are assured by the theories on non-semisimpk: matrices[l2]. Note that eqns
(~6) also apply to the case when 15 i= 0 and ki = k~.

With ~;. ~::. '1·l. 'IS properly orthonormalizL'd. it can be shown that

in which

(47)

V' = [~;. ~;.

V' = ['I',. 'I:.
(48)

In eqns (48) ~.1 and 'I} are identical to the ones obtained in the last st:ction, rfwe introduce
the 3 )( 3 matrices

we have

[
A' A'J

V' = n' 8' .

when: usc has oeen made of eqns (37) and

[

0

Y = I

o

It is useful to know that

[

t5

V- I = (~

[
A'Y 1\"']

V' =.1 .n'Y 8'\'

0](i (I) = V'.

o

(49)

(50)

(51 )

(52)

and hence V I = V when i5 =0,
As in the last section the product of V' and V,r in t:qn (47) can oe interchanged. That

IS

V'V,1 = I

or. carrying oul the matrix multiplications

A'VA,T +A'\'A'T = () = R'YH,r +8'V8'1 t
A'VR,r +,,""'8'" = ( = R'YA,r + 8' \''''''. j

(53)

(54)

This is the modified closure relations for eqns (25). Using the arguments following eqns
(25) one is tempted to write
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H = 2iA'YA'T }
L = - 2iB'YB'T

S = i(2A'YB'T -I).
(55)

When :\ is non-semisimple. i.e. when 6 = 0, the validity of eqns (55) can be established
easily by using the rebtion[8]

(N)~x = ±i~x

in which the" +.. sign is for ~ = I. 2. 3. the" - .. sign is for rx = 4. 5. 6. and

(56)

(57)

Equation (56) certainly applies to ~;. ~J and ~~. ~6' Lothe and Barnett[5] and Chadwick
and Smith[6] sh~)w that it applies to ~'~ and ~'5 also. Therefore. we have

[
AI

(N)U' = i B' -kJ-9' . (5X)

If we post-multiply ooth sides oy V'T and usc cqn (53). we obtain

II = i(A'YA'T-A'~kl) }

L = - i(B' Y8,T - 9' ~n'T)
S = i(A'YB,r - A'~n").

Equations (54) and (51)) lead to egns (55).
We will show in the next section that cgns (55) hold also for () of O. In dosing this

section we point out that to convert egns (26) to egns (55) one cannot simply n.:place A. B.
oy A'. B'. The matrix Y has to be introduced as shown in egns (55).

4. CONVERSION FROM TIlE STROll FORMALISM TO TilE MODIFIED FORMALISM

If egns (55) hold for any (). comparison with eqns (26) suggests that the following
conversion relations hold:

AA' = A'YA
/T

}

BUT = 8'Y8/T

AU' = A'YB",
(60)

We have proved that eqns (55) and hence egns (60) hold for J = O. It remains to prove that
egns (60) hold for () of O.

To this end. we will derive the relations between ~;. ~'~, and ~ I. ~!. Since ~,. tt,. ~ = 1.2.
arc scalar multiples of~" tt,. we let

~; = "~I'

,,; = ""1'
(61 )

in which egn (17) has been used and y. /; are constants to be determined. From egns (33) I

and (36) I we have
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Substituting eqns (61) and (62) into eqns (40) I, (40h and making use of eqn (19), we obtain

Recognizing the double solutions for y and & in terms of <5, we let

(63)

& = ±iy, (64)

without identifying which one of the two solutions is for 7, Therefore

and A' from eqn (49)1 has the expression

A similar expression can be written for R', Let

(65)

(66)

[

7 )'1

E= () =Fiy

o 0

Wc thcn have

(67)

A' =AE,

Bya dircct calculation it can be shown that

(I' = BE. (68)

EYET = I. (69)

Equations (68) and (69) lead to the identities in eqns (60). This eomplctcs thc proof th~tt

cqns (60) und hence eqns (55) hold for any 6.
With cqlls (60) one can convert relations which arc valid for simple or semisimplc N

to relations for non-semisimpk or almost non-semisimple N. For instance, the impedancc
matrix M is dc/ined as[l3]

Since

using cqns (60) we obtain

iM = BA 1

iM = B'A'-I,

(10)

(11)

(72)

This is one of thc few relations for which the conversion is achieved by a simple replacement
of A. B by A'. B',
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S":\.:fal ~llm ruks imolving th..: eigenvalllt':s [1, and elg..:n\":l.:tnrs';, have het:n reported
in t:k' lJtc'rd~llrt:[3. I·t 15], Th..: sum ruk~ 10\01\\.: thc' ~urnm,ltl,)n~ p!"p, and:;, whil.:h l'an be
v.ntt..::] tn matrl\ notation as one ol"thc' !"ollowing[16j

AP"\' . ,''''B
I

, BP"\', BP"R' I
,-\P"A I APB RP",\ BP"B I J (73)

in which I[ IS an inlegl.:r. positive or negati\l.:. and P IS til..: diagonal matrix

()

/' :

()

01() ,

/1,

[ach j)f thL' prndllCh in (7~) I.:an hI.: e~qlrl.:ssl.:d in IL'n]]S jlr the rc~d matricl.:s H. L. Sand N,.
1,2. -' Ih ~I dlr,:l.:l cakllidtion. it I.:an hI.: sl1\\\\ II th;ll

EPT 1'. VI'''V I' (75)

111 \\ 11IcI1 I,: h '.'1\1.:11 III l'l/n (1)7) and. hy el/11 ((,I))

I j-' (j

V , \ V' 0 j III"~

() ()

/' I ()

() f': ()

(j I) {I;

(77)

\VI.: '>L'l' th;lt I' j,> till' ,I1)rdan canonieallllatrl\ \\ hen /' :'~ /,., !-'I"lI]] nll]s (6X). (()I)) and (75)

WI.: h;I\,' thc: r,>lI,)WIIl'.' c:onv.:fsion rdatipn,:

and

AI''' A I \'1""\':\"
"

I-
I

,\I"U I ,\1' "\'B I I
BI''':\ ' B 1"'\,,\

, I
I
I

BI'''B' B'I"'\'B I j

(7X)

:\ 1"':\

:\P"B I

BP":\

BI'''B

= :\'1"",.\'

,~,\'P'''B' I

B 1"':\'

,=' B'P"'B' I

(79)
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where

(

p/l

p" = ~' (80)

Hence

(81)

(

V

P"Y = ~
pi

~] == (P"'V?

pj

(82)

6. SEPARATION OF~; tNTO a; AND b'l

The Stroh eigen·relation was in fact based on the earlier version. eqns (5) and (8)
proposed by Eshclhy et al.[7]. Thus instead of finding the 6-vector ~ from eqn (I I) one
could find the 3-vectors a and b from eqns (5) and (8). This may have some :ldvantagesin
a numerical calculation because not only the matrix D is smaller than N, one does not have
to lind the invcrse T I as shown in cqns (t 3). When N is non-semisimptc. so is I>(p) or eqn
(5). This mcnns th~1t when 1''J. == /,,, a~ := al' To modify cqns (5) and (8) for the cascs when
l>(p) is 110n-scmisimple or almost non-semisimple, we follow thc deriv:ltioll of cqns (32).
We oht:lin

()(pI)a'i =0 }

t>(p'J.)a~ + {(R + R"f) + (PI + p'J.)T} ai =O.

As to the modification or eqn (8), we have

hi = (Rr+p,T)a'j = _(_LQ+R)a'; }
PI

b: = (Rr+PlT)a'2+Ta'~ = -(~"Q+R)a:+ __1-Qui.
1'2 1'11'2

(X3)

(84)

Equations (83) and (84) provide ai, a'2, b'i and b''J. which form the components of ~i and f2'
One then finds,"" Ii;' from cqns (37) and orthonormalize the eigenvectors as outlined in
Section 3. To complete the system. one finds a), b) of ~l from eqns (5), (8), 'I) from eqn
(17) and normalize ~ I using eqn (19).

For isotropic materials we have PI = 1'2 == i, al = a2' and the outlined procedure leads
to

[k'
-li.:k l

}JA' == i~l -Kk t

0

[ 21k, k 1

1JB' == J.t -~kl -ik l

0

(85)

(86)
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, Ikj = ~._._~-

8Jdl-v)

T. C. T. TI~G and C. HWl:

, -i
ki = ~­. .,

-Jl

3-4\'
/(=

2
(87)

where JI and \' are, respectively, the shear modulus and Poisson's ratio. With A', B' given
by eqns (85). (86) and Y by eqn (51) with c5 = O. eqns (55) provide H. Land S for isotropic
materials. The non-zero elements of H, Land S are

3-4\'H" = ._~.- ...._-
-- 4JI( I - v)'

1I
L I I = L" = ._'_ .. ,., 1-\,

1-2\'
-51' = '._ .. - .

. 2(1-v)

(88)

This agrees with the results obtained by using the integral fonnalism in Ref. [8].

7. CONCLUDING REMARKS

The modified sextic formalism presented here applies to any matrix N which is simple,
almost non-semisimple or non-scmisimplc. The formalism is particularly useful when N is
non-semisirnple or almost non-semisirnple. Thus instead of the integral formalism[8]. eqlls
(55) offer an alternate w,ly of obtaining the three real matrices fI, t, S when N is nOli­
sernisimple or almost lIon-semisimple.

We did 1I0t consider the possibility of a non-semisimple N in which PI = P2 =1'1 and
~ I = ~ 2 = ~ I' We have not seen such an example and it appears unlikely that there exists
a real material which leads to PI = I' 2 = PI and ~ I = ~! == ~ I. For isotropic materials
1'1 = P2 = I' \ = i hut'; I == .; 2 # .; \ and hence the modified formalism applies to isotropic
materials as shown in the last section.

REFERENCES

I. A. N. Stroh. Dislocations ano cracks in anisotropic clasticity. I'hil. Mall. 7, 625 646 (195S).
~ A. N. Stroh. Steaoy state prohlems in anisotropic claslicity. I Malh. I'hn. 41. 77 103 (1962).
J. K. Nishioka and J. Lothe. Isolropic limiting hchavior of the si~·oimcnsional formalism of anisotropic

oislocation theory ;Ino anisotropic Green's function theMy, (I) sum rules ano thcir applications. I'hys . .'ilal.
Sol.//5I,64565('(1972)

4. K. Nishioka and J. Lothe. Isotropic limiting hchavior of tht: six-oimt:nsional formalism of anisolropi.:
oisloc:llion theury and anisotropi.: Gr~'Cn's fun.:tion theory. (II) pcrturhation theory on tht: isotropic N-matri~.

1'111". SIal. Sol. 852.4554 (1972).
5. J. i.otht: and D. M. Barnett. On the t:.xistence uf surfa.:e-wave solution fur anisotropi.: clasti.: half-spa.:e with

free surfa.:e. I AI'I'I. I'h.l'~. 47, 42S 4.13 (1'J76j.
6. 1'. Chadwi.:k ano G. D. Smith. Foundations of the theory of surf:lce waves in anisotropi.: dastic materials .

.·,dl'. AI'I'I. Mc"h. 17. 3()J·376 (1977).
7. J. D. Eshdhy. W. T. Rt:ad ano W, Shocklt:y. Anisotropic dasti.:ity with applicatiuns tu dislo.:ation theory.

Acla Mt'lull. 1.251·259 (1953).
S. D. M. Barnett ano J. Lotht:. Synthesis of the st:.xtic ano the integral furmalism for dislucation. Gret:n's

fun.:ti,'ns ano surfa.:t: wavt:s in anisotropi.: dasti.: solios. I'h)'.I'. ,Vi/rr'. 7,13 19 (1973).
IJ. D. M. Barndt ano J. LOlhe. All im;lge for.:e lht:ort:m for ,hslo.:ations in anisolropi.: hi.:rystals. 1. I'llys. r .t,

161K 1635 (1<J7-1).
10. D. M. B.lrnt:1I and J. Lothe. Line fur.:e loaoings un anisotropi.: half-spa.:e and wedges. I'hy". Norr'. II. 1322

(1975).
II. T. C. T. Ting. E.'lpli.:it solution :100 invarian.:e of Iht: singularitit:s at an interfa.:e .:rack in anisotropi.:

compositt:s. 11/1. J . .'iolids Slructure.' 22. 965-9S3 (!9Sfi).
12. M. C. I'ease, III. Mcll",d, of Matrix A(ql·hra. Academic f>rt:ss. New York (1965).
13. K. A. Ingt:brigsten ;tnd A. Tonning. Elastic surfact: wavt:s in crystals. Phys. RCI'. 11l4(J). 942951 (1969).
1-1. D. 1. Ba.:on. D. M. Barnell ano R. O. S<.:allergooJ. Tht: anisotropi.: .:ontinuum lht:ory of lalli.:t: oefl"Cts. Prot/­

,H<llcr, Sci. 23. 51 262 ( 197R I.
15. R. J. Asaro. 1. P. Hirth. D. M. Barnett anJ J. Lothe. A further synthesis of se~ti.: and intt:graltheories for

dislocations and lint: forces in anisotropic mt:dia. Ph.n. Sltll. Sol. 860, 261 ·271 (1973).
16. T. C. T. Ting. Somt: identities ano the structure of N, in the Stroh formalism of anisutropic dasticity. Q. Al'rl.

.\1<llh. I 'iKK. in press.


